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Abstract

Accelerating the execution of algorithms involving floatipoint computations is currently a necessity in the sci-
entific community. A solution — FPGAs — are believed to previtle best balance between costs, performance and
flexibility. The FPGA's flexibility can be best exploited whaised to accelerate "exotic operators”(log, exp, dot
product) and operators tailored for the numerics of eactiGgiipn. These requirements gave birth to FloPoCo, a
floating-point core generator written in C++ available unG®L atl.

The purpose of this work was to bring FloPoCo to maturity, tanfework stabilization and operator implemen-
tation. In term of framework stabilization we have implertegha novelautomatic pipeline generatiofeature. In
term of implemented operators, our work includes the bdsickis of FloPoCo: IntAdder, IntMultiplier, FPMultiplier,
DotProduct, Karatsuba multiplication, FPAdder, LongAceuator.

The obtained results are promising, ranking higher tharre¢belts obtained by FPLibraR/and not far from the
operators generated with Xilinx CoreG&nHowever, we generate portable VHDL code which is targe¢jrehdent,
while CoreGen work only with Xilinx FPGAs. Nevertheless,nks still needed to bring some operators to CoreGen
level.

We also studied the possibilities to implemémterval arithmeticoperators on FPGAs. We have proposed and
discussed architectures for the four basic operation®dtr infimum-supremum and midpoint-radius representation
We have also proposed an application for testing diffemante-offs in terms of precision and size of these operators.

Ihttp://iwww.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo
2http:/Avww.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/
Shttp://www.xilinx.com/ipcenter/coregen



1 Introduction

1.1 Floating-Point Arithmetic

Several different representations of real point numbeist,éfor instance thaigned logarithn{1], floating slashand

the floating-point[2] representations. Among these, by far the most populthédloating-point one. It's definition
can be stated as:

Definition. In a floating point system of bage mantissa lengtlw and exponent rang€,,,;,,... Fnaz, @ NUMber
t is represented by a mantissa (or significand) = t¢q.t1...t,,_1 Which is an-digit number in base b, satisfying
0 < My < b, asigns; = +1, and an exponent,, E,,;, < E; < F,q., Such that:

t:StXMtXbEt’

To ensure the uniticity of representation it is usually ieeghithatl < M; < b (a non-zero first digit).

The IEEE-754 standard defines the representation of floatimt single and double precision numbers [2]. These
are the most common floating-point formats provided by camphbardware. The parameters of these formats are
presented in table 1.

Name b n Erin  Emee Max Value

single precision 2 23+1 -126 127 3.4..x 10°®
double precision 2 52+1 -1022 1023 1.8... x 10398

Table 1: IEEE 754 single and double precision floating-pfunnats

Rounding errors are inherent in floating-point computatioifhe simplest operations, like the sum or product
of floating-point numbers, do not always generate a reptabknfloating-point number for the result. In order to
represent the result in the floating-point system underideration, it might need to beounded We denote by
machine numbethe floating-point number which can be exactly represemtedfioating-point system.

The IEEE-754 standard defines four accepted rounding m@ites [

* rounding towards-co: V(z) is the largest machine number less than or equal to
* rounding towards-co: A (z) is the smallest machine number greater than or equal to
* rounding toward$) : Z(z) is V(z) whenz > 0 andA (z) whenz < 0

* round to nearest o(x) is the closest machine number wheris between two machine numbers. Wheis
exactly in the middle of two machine numbers then the one fisievenwill be returned.

1.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays or for short FPGA(s) are qfaat larger family of reconfigurable hardware. They
were first introduced in 1985, by Xilirfk In present time, the FPGA market has grown considerabilyelaompanies
like Altera® or smaller ones like Act@ becoming more and more influent.

At a structural level, an FPGA consists of three parts [3]:

« a set ofconfigurable logic blocks (CLB)
e aprogrammable interconnection netwaalso called the switch matrix,
 a set ifprogrammable input/output cellround the device.

The top-level view of an FPGA architecture is presented iaréigl. The logic in an FPGA chip is organized hier-
archical. The names and notations differ from manufactiorenanufacturer, but the organization is mostly the same.
For example, in the case of Xili®FPGAs: at the top level of the hierarchy, defining the mosegerorganization
of logic is the CLB, next are the slices 2, which are the comstits of the the CLBs. Depending on the FPGA, the
number of slices in a CLB can be different.

At low level, the implementation of a function in an FPGA tséates to the following steps:
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Figure 1: The basic architecture of an FPGA chip

« the function to be implemented is partitioned into moduwiesch can be implemented into CLB,
« using the programmable interconnection network, the CteBcannected together,

« these are further connected to programmable 1/Os for cetinpl the implementation.

1.2.1 Slice architecture

Let us now consider the features of Xilifixirtex IV FPGA which are relevant to this work. The CLBs prasi this
FPGA contains four slices. A simplified diagram of the slitesture is presented in figure 2. The slices are equivalent
and contain: two function generators, two storage elemarfisst carry chain, logic gates and large multiplexers [4].
It must be noted that Altefahips share the same functionality.

The function generators are represented by configurabi@ut-iook-up tables (LUTs). The LUTs can be either
used as 16-bit shift registers or as 16-bit distributed nréso In addition, the two storage elements are either edge
triggered D-type flip-flops or level sensitive latches.

Each CLB has local fast interconnect resources for cormgdtiternal slices, and connects to a switch matrix
to access global routing resources. The fast carry chais dsdicated routing resources of the FPGA. It is used to
implement fast additions, multiplications and compargon

1.2.2 DSP blocks

In addition to the previous, most FPGAs today have all therdie elements essential for digital signal processing
(DSP). The modern DSP blocks are dedicated silicon blocitsaedicated, high-speed routing. The internal architec-
ture is different from manufacturer to manufacturer buytgenerally share the same functionality.
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Figure 2: The basic architecture of an FPGA slice
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For instance, the DSP block of a Xilinx Virtex IV FPGA 3 canheit implement: an 18 bit x 18 bit signed integer
multiplication, a multiplication followed by a 48-bit acewlation (MACC), or a multiplier followed by an adder/sub-
tracter. The DSP blocks have built-in pipeline stages whpidvide enhanced performance for a throughput of up to
500 MHz. Moreover, due to their fabrication process the DBEKs are also very power efficient.

The DSP blocks of the Altera Stratix device family have fo8x18-bit multipliers that can also be configured to
support eight 9x9-bit multiplication or one 36x36-bit niplication for different applications. The DSP block also
contains an adder/subtractor/accumulator unit can beguoefi as an adder, a subtracter, or as an accumulator on
9-bit, 18-bit, or 36-bits, as necessary. In the accumulatode, the unit may act as a 52-bhit accumulator useful for
building double-precision floating-point arithmetic. Hewver, the DSP blocks in Stratix devices run at a maximum of
333 MHz.

2 State of the art

2.1 Floating-point computation using FPGAs

Most scientific algorithms require some form of fractiongpresentation for their internal variables. In most popula
programming languages the solution is to declare variafdeBoating-point numbers. The representation of these
numbers is often based on one of the two IEEE-754 floatingtformats (see table 1).

It is generally believed that reconfigurable logic (suchresEPGA), has the potential to speed up many of these
scientific algorithms. Due to modest initial densities ofGA%, porting scientific algorithms on them usually meant
transforming all the internal variable representatioo fited point. However, in some algorithms, the dynamic range
of variables is impractical for a fixed point implementatiofogether with the commaodity of floating-point formats,
the motivation for implementing floating-point operators BPGA conducted numerous studies ([5], [6], [7], [8]).
However, floating-point computations started to becomsilidaon FPGAs only during the mid 90'. This was mainly
due to the increases in speed and density of FPGAs.

The studies conducted on this subject took two different@gghes.

For the first, in order to take full advantage of the FPGA reses, the operators are tailored in order to conform
to specific input/output constraints constraints. Shiedzl. [6] provided two custom floating-point formats (16sbit
and 18 bits total) and designed specific architectures famtbf the operations of addition and multiplication. [In [9],
Shirazi et al. suggest customizing the representation afifig-point numbers in order to exploit the flexibility of
reconfigurable hardware.

Consequently, many parameterized floating-point opesdiave been proposed. Some of the parameterizations
take advantage of specific characteristics for the deploytaeget [10]. Other are simply parameterized in precision
so that a good compromise between precision, speed andaagdarobtained [7]. Some parameterizable operators
are distributed under the form of generic libraries ([11], [12]) so that the operators can be used with off-thefshel



FPGAs.

The second research approach consisted of designing singldouble-precision operators for FPGAs and exam-
ining the speedup of these operators when compared to thieserp in high-end general purpose processors. The
first feasible single-precision implementation resultsemaresented in [13] but no significant speedup was obtained
on a Pentium processor. In/[8] Underwood presented desigrsifgle and double precision IEEE compliant floating-
point addition, multiplication, and division. His analgsin the trends of floating-point computing estimates that th
performance peak of FPGAs will surpass by one order of madaithat of general-purpose processors in 2009.

Another idea was to use not only custom precision, but alstoou operators and architectures. Following this
approach this order of magnitude was already reached in g@8band [15]) for elementary functions. This further
conducted to the idea of building a tool for generating cusbperators for FPGAS, exotic operators, ones which would
not be economical for implementing in general purpose [Fa@es.

3 The FloPoCo project
3.1 Context

With the current approach of parameterizable librariesMBIDL operators reaching it’s limits, the time came for
exploring a different perspective in generating VHDL opers. This motivation gave birth to FloPoCo, a floating-
point core generator for FPGASs.

FloPoCo is the successor of FPLibrary, a library of paranehkle floating-point operators for FPGAs. Developing
FloPoCo became a necessity due to problems regarding thexgserience in using the library and the difficulties
encountered during late project development. From thégseint of view, the unpleasant experiences were regarding

e importing the library to the project; tedious work in adglifiles manually to project.
« the difficulty of re-pipelining operators.

* lack of design space exploration, i.e. due to their geretare, libraries cannot choose the best among possible
implementation solutions.

The advantage with having a generator of operators is tea HDL code remains clean of generic and recursive
code. The complexity of the code is transferred from the VHidlurces to the generation software. Consequently,
the VHDL code is simplified and synthesis takes less. Moredhe generation of operators may take into account
different architectural parameters (number of LUT inpatayy propagation delay, etc.) and also constraints inghose
by the user regarding area, speed or accuracy. Thereforeragers offer the possibility to adapt the generated apera
pipeline to multiple constraints. Additionally, genenaallow a high-level input specification for operators tihge
with a complex design space exploration in order to find thegewhich best fits the input constraints.

The purpose of FloPoCo is to generate state of the art opsnatoch satisfy multiple constraints. We now present
detailed examples for operators we implemented in FloPoCo.

3.2 Integer addition

We consider here the addition of two positive integers regmeed in radix 2. The global architecture of this adder is
shown in the left of figure 4. The inputs of this operator Ar@andY” satisfyingd < X,Y < 2" — 1 and the carry in
bit, denoted by:;,, € {0,1}. The output are the sum< S < 2" — 1 and the carry out bit,,.; € {0, 1} such that:

X+Y +c¢ipn=2"Cout +5

In the case when = 1 this the above formula reduces to a primitive calledftiieadderrepresented in the right
part of figure 4.

FloPoCo is able to generate a range of operators performiager addition. Available parameters for this operator
comprise:

* pi pel i ne=yes/ no. The architecture generated according to this input patemie either sequential if the
parameter value is “yes”, or combinatorial otherwise.
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Figure 5: Obtained frequencies against requested fretggenc

e frequency=f. This option, used together withi pel i ne=yes determines the pipeline structure of the
output operator. The pipeline is modified so that the freqyesf the output operator be as close as possible
to the requested frequency . Figlre 5 plots the obtainediémecjes against requested frequencies for different
sizes of integer addition. The solid line plots the optimalput frequencies for each of the input case. One
can observe that the obtained frequencies for this opeaatcalways greater than the optimal frequencies. The
difference between these frequencies is larger for smadlitiad size but this comes at no expense from the
resource point of view. For instance, the addition of twabliGaumbers realized by the IntAddé6 component
has an output frequency of more than 500MHz without usingragisters to pipeline this addition. Moreover,
for IntAdder.256 the obtained frequencies are closely controlled thraaglition pipelining.

In order to reach the requested input frequencies, FloP@&adsto pipeline operators. FloPoCo implements
automatic pipeliningi.e. the register levels are inserted into the operatdri@ciure automatically. In order for an
operator to reach a certain frequency, the critical pataydef that operator needs not be greater than the period at the
given frequency. Due to complex combinatorial operatitimsjnput signals accumulate delays from the circuit’s thpu
towards the output. The registers represent memory elenf@ntage) which are able to store the information deltvere
at their input, when requested. By inserting memory elesfatstoring the intermediary results in an operation, we
stop the accumulation of signal delays, and thus we are alglertstrain our circuit delays under a given bound.

As addition uses the fast-carry logic, we are able to derikaleer precise mathematical formulation for the delay
of ann-bit adder. This delay is greatly influenced by the specifarahbteristics of the deployment target:

dezaynBitAdd = delayLUT +n- delayCarryPropagation

wheredelayryr represents the LUT delay, anélaycqarry Propagation represents the delay for propagating the
carry bit between adjacent logic elements by using the désticfast carry logic routing. For a given input frequency
f to be reached, the accumulated delays need to be smallet tffarlf we impose this on the above equation and
extractn we have:
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with the constraint that is always an integer value. If the result of this equatioresslor equal to 0, it follows
that the requested frequency cannot be reached for theatdition and consequently, the addition needs to be broken
into smaller additions. An example of this is shown in figureltere the input n-bit addition needs to be broken into
tree parts so that the requested frequency is reached.

Figure 7 shows the dependency between the requested figgaieth the number of slices used by the architecture
IntAdder.128. For the simple pipeline model of the integer adder, areabserve a linear increase in the number
of slices used by the architecture. On the other hand, werségtire[8 that the number of pipeline levels of the
architecture has a more than linear increase.

Now that we studied and implemented the operator perforriieginteger addition, let us move-on to a more
complex operator — the integer multiplier.

3.3 Integer multiplication

We consider here the multiplication of two positive integegpresented in radix 2. The global top level schematic for
an n-bit multiplier is shown in figure 9. The inputs of this ogter areX andY satisfyingd < X, Y < 2" — 1 and the
output is the product ok and X having the property < P < 22" — 1.

The FloPoCo implementation of integer multiplication taKall advantage of the special FPGA target features
such as DSP blocks. As previously stated, these blocks &aamperform multiplications of unsigned numbers of up
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Figure 9: Top level schematic of an n-bit integer multiptioa

to 17-bits wide in the case of Virtex IV device.

Let us denote byX andY then-bit input numbers which we want to multiply and bythe width in bits of the
embedded multipliers. We now look at the multiplicati@nx Y as a multiplication in radi®”. If necessary, we pad
the inputs with zeros to the left such that the width of theutsgransforms fromn to n,. wheren,. is the smallest
number satisfying the property. > n and“> € N.

The two input numbers are now divided inigarts, each part containirig digits. We denote the parts fof by
X1,....Xp and similarly for Y. The denote product of two 1-digit radix numbers by:

X; xYi=P % 2"+ P "

whereP; ;7 andP; ;“ are the are the two digits of the result.
Now writing the multiplication in radiX” becomes:

Xpofl...Xl X Ypypfl...yl = Z Pi’jL . ’f’i+j + ZZPL]'H . 7'i+‘j+1
j=11i=1 J i

This equation shows how the n-bit base 2 multiplication catrénsformed intp? 1-digit base2” multiplications
and summations. The bagls multiplication can be directly feed to the DSP block on th&SAP The result of this
multiplications will now need to be shifted and added. Foatiely, we can concatenate into bit-vectors with the names
Low; the products of the forrm-,jL and with the namé{igh; the products the fornZPZ-_,jH for fixed values of. Now,
the only shifts which appear are those between bit-vediors, and Low;; and correspondingly betweéfhigh; and
High;y1 and one global shift on all bit-vectors of the fomang.

An example of how this is transformed into an architecturgiven in figure 10 for the case when= 3. Ad-
ditionally, a simplified version of the adder structure wh&ums all partial products is shown. The low part of the
final product is obtained gradually by summing availabletee For instance, the least significant r-bits of the final
product are available immediately after the multiplicatio Following the addition of the first two vectors from the
low part of the result, the next r bits of final product are comepl by summing-up the least significant r bits of the first
two low bit-vector sum Low;+Lows), and the least significant r bits of the first bit-vector & tiigh part of the result
(Highy). Then the process repeats.

For simplicity of representations technical details wemmoved from the schematic. The technical details include
pipelining of the long additions between concatenationtarsg together with pipelining of the last addition which
computes the high part of the result. These pipeline stagi@sits arbitrary frequencies to be attained by this operato

This architecture is optimized for the use of DSP blocks asperforming the computation of the partial products
in parallel. The results showing the dependency betweeretiigested frequency and the obtained frequency for the
architectures IntMultiplie24_24 and IntMultipliert53.53 are shown in figurfe 11. This integer multiplications hdnee t
same size as the mantissa multiplications for the IEEE-ifglesand double precision representations. We remark that
in general, we provide higher frequencies than requesthd.eXceptions can be explained with the help of figure 13
which presents the dependency between the requestedticoaed the number of pipeline levels of the architectures.
We can observe the rapid increase in the number of pipeligdslas the requested frequencies grow above 200MHz.
Consequently, the additional number of registers insddethe pipeline levels causes the area of the architecture t
increase. Therefore, the routing delays become more signtfand reduce the frequency of the architecture. In this
cases the solution is to request larger frequencies tharedeand repeat the process if unsuccessful.

Let us pass to an even more complex operator, the floating-pailtiplier.
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Figure 10: A example architecture of pipelined additioretfer integer multiplication. Each input is split into three
chunks

3.4 Floating-point multiplication

We now consider the multiplication of two floating-point noers, X andY . These operands have the representation
(M, E,) and(M,;, E,) respectively. The significands of the operands are signdcharmalized. The product of

andY is written as:
Z=XxY

where Z is denoted by the paif)/};, Ez) which is also signed and normalized. From the algorithmitpof
view, the floating-point multiplication has the followinteps:

1. multiply the significands and add the exponents:
M} = M3 x My
Ez = Ex + By
2. normalizeM; and update exponent accordingly,
3. perform rounding,

4. set the exception bits.
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The floating-point (FP) number format used in FloPoCo isiiespfrom the IEEE-754 standard [2]. The key idea
of the format is to represent numbers with a fixed-point ndizad mantissa multiplied by an order of magnitude. This
representation is parameterized by two bit-widths; andwr. The floating-point number is now represented as a
vector ofwg + wg + 3 bits which is partitioned ir fields as shown Figure 14. The description of #feelds is given
below:

* exn (2 bits): the exception tag, used for infinities and NotANungaN), zero.
e Sx (1 bit): the sign bit;

» Ex (wg bits): the exponent (biased gy = 2wz~ — 1);

e Fx (wp bits): the fraction (mantissa).

The top level diagram for floating-point multiplication isgsented in figure 15. The architecture is based on that of
the integer multiplier, which is the main component of theafilog-point multiplier. The FloPoCo implementation
of the FPMultiplier performs rounding to nearest, as désdiby the IEEE-754 standard. The details regarding
pipelining and it's synchronization have been left out foe sake of simplicity. It must be noted however, that the
current architecture is able to multiply numbers havingedént precisions, output the result on the a desired pogcis
and adapt the pipelining levels to the desired input frequerutomatically.

The dependency of the output frequency with respect to thatifrequency is presented in figure 16. It can
be observed that the frequencies are usually better thagctedy except when the frequencies become high. The
bottleneck in this case is the integer multiplier. The numifeslices used by the FPMultiplier is shown in figlird 17
together with the number of slices used internally by theget multiplier. As we can observe, the overhead induced

12 T T T T T

107 ntMultiplier 24 24—— T
IntMultiplier 53 53>

8

6

41 /
0 . . . . .

100 150 200 250 300 350 400
Requested Frequency (MHz)

Pipeline depth

Figure 13: The dependency between requested frequencyhamiiimber of pipe levels for IntMultiplie24 24 and
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exn |Sx Ex Fx

2 1 wgE o

Figure 14: Floating-point number format.

Se Sy FEzc, Exc, E, Ey M, My
Z,I/ Z,I/ wE,I/ 'wE,I/ wp + wp ,I/
Compute Compute Exponent Integer
Sign Exception Addition Multiplier
Substract
bias
I 2% wp
Update | Update :
Exception Exponent Normalize
Update | Update
Exception Exponent Round
S. Ezxc, E. M,

Figure 15: FPMultiplier top level diagram

by the rest of the circuitry of the FPMultiplier is less th&e size of the integer multiplier. Figure]18 shows the growth
in number of pipeline levels of the generated architectgréha requested frequency increases. We can observe that
the growth rate is similar to the growth rate of the integeitiplier, suggesting again that this is the largest reseurc
consuming component of the FPMultiplier.

Let us now see where this results stand. For comparisons @tRRLibrary, a VHDL library of parameterizable
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floating point operators available at: http://www.ensAydLIP/Arenaire/Ware/FPLibrary/ for the case of the EEE
single and double precision representations. The reseilpasented in table 2. In the case of single precision, the
operator generated by FPLibrary takes more than twice & @mpared to the operator generated by FloPoCo (450
slices vs. 208 slices). The frequency of the FPLibrary dpetia also much lower (163 MHz vs. 402 Mhz) than the
frequency of FPMultipler operator. Moreover, FloPoCo sanppdifferent precision for the inputs, and also different
precision for the output. This is not the case when workinipwPLibrary.

We also made a rather unfair comparison with the Xilinx Cae®ol, a core generator which is the state of the
art for Xilinx platforms. Table 2 shows the performancestf@ operators generated by CoreGen. In the case of single
precision, the FloPoCo operator is not far behind in termexfuency (471Mhz vs 402Mhz) and in terms of slices
used (171 slices vs. 208 slice). However, the latency of tli@perator is only 6 when compared to 10 for the CoreGen
operator. Moreover, CoreGen only supports high speed medes the case when a particular frequency is enough for
the operator, CoreGen generates the best operator it dag,the same amount of resources. For instance, for a single
precision operator at 100Mhz, FloPoCo uses 109 slices wheCereGen still uses 171 slices. Moreover, CoreGen
does not support different input precision. In the case obtk precision operator we observe that when only 9 DSP
blocks are used by the CoreGen operator, this operatogistisiinferior to the one generated by FloPoCo. However,
when giving CoreGen the possibility to use the full numbebD8&P blocks, it's performance becomes superior to that
of FloPoCo. Nevertheless, CoreGen does not generate fXMeDL files and works only for Xilinx targets.

Unlike CoreGen, FloPoCo is a generic floating-point coreegator. The internal code of FloPoCo is not architec-
ture specific, but parameterized function of the deployntengiet. The aim of FloPoCo is to generate architectures for
any targets. For retargeting a specific operator, the codehvgenerates the architectures does not need to be modified.
What is needed is the addition of a Target class bearing thenmitcharacteristics of the deployment target. This way,
the portion of code which needs modifications is minor. Havethe price that FloPoCo pays for being generic is that
it's generated operators are still a little bit slower angjéat than the state of the art operators generated by CoreGen
This price becomes lower if we also consider that the timeleédor deploying a new operator is greatly reduced.

Software | Representation) Frequency Slices DSP

FPLibrary sp 216 MHz 450 1
FPLibrary dp 163 MHz 1339 30
CoreGen sp 471 MHz 171 4
CoreGen dp 265 MHz 1016 9
CoreGen dp 361 MHz 469 16
FloPoCo sp 402 MHz 208 4
FloPoCo dp 309 MHz 1095 16

Table 2: Synthesis result for floating point multiplicatieith FPLibrary, CoreGen and Flopoco
(sp means single precision and dp means double precision)

3.5 Other operators

We have also implemented in FloPoCo the dual-path floatoigt@ddition. However, this architecture needs more
work at the level of pipelining the leading zero counter comgnt. This component uses long comparisons which
could be performed using the DSP blocks of modern FPGAs.

In order to reduce the number of DSP blocks used by the intagéiplication we have designed a combinatorial
version of the Karatsuba multiplication. Early resultsm@mising, since we have managed, for a 53 bit multiplicgtio
to reduce the number of used DSP blocks from 16 to just 9. We baxrently in plan to pipeline this operator.

We have also worked on using these multipliers in specifibitgctures for dot product and sum of squares. Due
to lack of space we omit this work here.

3.6 Conclusion

We are now happy that automatic pipelining works well evemcfumposed operators. So, we can now attack more
complex problems, for example, interval arithmetic opangivhich, at their basis, are composed of optimized basic
operators. We will try to develop operators which outperfaheir equivalents in general purpose processors, at least
in some cases.
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4 Opportunities in deploying interval arithmetic on FPGA

4.1 Notions of interval arithmetic

In real life, due to the inevitable measurement inaccurtey,exact values of the measured quantities are unknown.
What are know are, at best, the intervals of possible valughifse quantities.

When we use a computer to make computations involving reabeusnwe have to use the finite set of floating-
point numbers that the hardware makes available. It is knthah most real values do not have a finite floating-
point representation. The possibilities in representea numbers in computers consist of either using floatirigtpo
numbers obtained by means of rounding, or by using an intenssisting of two floating-point numbers with the

property:

fi <7 < fowherer e Randfy, fo € F

Here,[F represents the set of representable floating-point nunaimefR the set of real numbers.

Interval arithmetic is based on the idea of bounding realieslwith representable intervals. On one hand, it
provides means for reasoning about all the possible resfiéiscomputation involving an input interval. On the other
hand, it is used to provide guarantees on the result of ariggtdint computation, i.e. for a given computation, no
matter what rounding errors occur, the real result is alwaghided in the output interval. This is a fundamental
property of interval arithmetic and is called timelusion property

There are two common representations of intervals @&eFirst, we have thénfimum-supremumepresentation
which denotes an interval by specifying it's two ends:

[a1,a2]) :={z € R:ay < x < ay} forsomeay,as € R, a1 < ay

Second, we have theidpoint-radiusrepresentation which denotes an interval by specifyisgcignter (also called
midpoint), and it’s radius.

<a,a>={reR:|z—a| <a}forsomea e R, 0 <aeR

In this study we are concerned only with interval arithmegerations for which intervals are represented dizer
which is the set of intervals represented using floating¥poimbers. The séx.;, rrqc CONtains the floating-point
numbers having an exponehtzp and a fractional part'rac. For instance, the IEEE-754 single precision floating-
point representation is denoted By »3. Consequently, the following relation holds over the sefl@dting-point
numbers:

F= ] Fi
i,jEN
The two different interval representations yield differ&f sets. For instance, not all intervals which are repre-
sentable in midpoint-radius format have the equivalennfimium-supremum representation. Accordingly, we cus-
tomize the notation for the set of intervals derived fromtlogation in the two cases. As a result, the notation for the
set of intervals using the infimum-supremum representats)]IF{Eipv rrac- REAEfiNiNg the set of intervals with this
notation gives:

IS L .
]HFEIL‘[),FT‘(IC T {[a17a2] tay,az € FEa;p,Fraw a1 < Clg}

In the case of the midpoint-radius representation, an patiparameter appears in the notation denoting the
flogting—point charac_teristic ofthe rgdius. Cons_equem@@en_otg the set of float_ing_point intervals]lﬁ%fl,’ﬂac)7(Esz’chr).
Using this new notation, the set of intervals using the nritpadius representation is:

MR
IF (B, Frac),(Bap,, Frac,) 7= {< @@ >1 @ € Fpup prac s @ € Fpap, Frac,, @ > 0}

Throughout this section, whenever the center and the rdwdilesg to the samEg,, rrq., We forget the second
parameter of the representation for the set of intervalsrdehed by using the midpoint-radius representation.

Our efforts to study the opportunities of interval arithinetn FPGAs are motivated by the desire to provide more
performance, at least in some situations, than generabparprocessor can offer for interval arithmetic operators.
Particularly, for the two representations of intervals,design optimized architectures and compare these artiniésc
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Figure 19: Infimum-Supremum addition architecture

in terms of resource usage. We then present an applicatiomtich the operator architectures designed for FPGAs
have the opportunity to accelerate computations.

4.2 An analysis of algebraic operations

In this section the four basic operations: addition, sausion, multiplication and division will be analysed foroba
of the two interval representations. Issues regardinguresarequirements and performance expectations will ke als
covered.

Let us now define the intervals which will be used to performliasic operations:

Let A = [a1,a2] and B = [b1, by] denote interval operands having the infimum-supremum septation, where

ai,a,by,b0 € F anda1 < ag, by < by, A, B e HF[ESQ'J]LFTGC' LetC = [01,02] with c1,c0 €EF andcl < co denote the
1S

result of an interval operation in infimum-supremum repnésonC' € IF ), py.q.-

Let A =< a,a > and B =< b,8 > be intervals in midpoint-radius representation for whicly, b, 5 € F
anda > 0,8 > 0. LetC =< ¢,y > with ¢, € F and~ > 0 denote the result of the interval operation in
midpoint-radius representation. When we talk about opesatomidpoint-radius representation, we say thal3 €

IUF]WR
(Ezp,Frac),(Exzp,,Frac,)"

4.2.1 Addition

In the case of infimum-supremum interval representatianréisult ofA + B is [16]:
C = [e1,co) Whereey = V(ay + by) andes =A (aq + by)

The architecture of this operator is presented in figure d®ts interval addition to be implemented in an FPGA,
the cost is of two floating-point adders as the one shown indi@0. The left adder one computes the sumt b,
rounding towards-oco while the right one computes the sum+ b, rounding towardstoo.

For general-purpose processors, the possibilities ine@tang floating-point computations are by use of pipelini
the operations or by use of a single instruction multiplead&IMD) instruction set with support for floating-point
operations. The first who gave support to the instructiomset AMD® with the 3dNow® technology, and then, 1
year later came Intel© with the SSE®© technology. This tetbgies permit multiple floating-point computations be
performed in parallel. Both instruction sets support thEEE754 rounding modes, but cannot use different rounding
mode in parallel for the same instruction.

Consequently, if a large number of interval additions nedattperformed, then performing the all additions which
round towards-oco and then all additions which round towargeo would give best performance for the processor.
This would however require extra programming overheade@iltse, the feature behind the SIMD technology cannot
accelerate the computations.

In the case of intervals represented in midpoint-radiusf@dding two intervals reduces to adding their midpoints
and then adding their radii. As the result of the adding of twating-point numbers is not necessarily a floating-point
number, when adding the centers of the intervals, the erastwoccurs due to rounding might cause a violation of the
fundamental inclusion property. In order to prevent this,must add to the sum of the radii a quantity which corrects
this rounding error.

So, the result of the additioA + B becomes [17]:

C =< c¢,v> wherec = o(a+b) andy =4 (¢’ - |c| + a + 3)
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The quantitye denotes the relative rounding error unit. For example, éncifise of the IEEE-754 double-precision
format, ¢ = 2752. Furthermoreg’ is set to%s. Figure[21 shows the overestimation introduced by the niidpo
rounding in computing the result radius. This overestioraiis caused by the teraf|c|. which is necessary for
preserving the inclusion property of the operation.

The architecture of this operation is presented in figureV22 make some considerations form architectural point
of view:

« a data dependency appears between the computation dfrreédpbint and the computation of the result radius.
From technical point of view, this data dependency congisidding register levels for delaying the computation
of the radius. Fortunately, this is not necessary, due tdatiethat the addition of midpoints and radii can be
performed concurrently as can be observed from figure 22.eMar, no register levels need to be adders for
synchronization due to the fact that the floating-point adide the same number of pipeline levels independent
of the rounding mode.

« the product’ - |¢|, whereloge’ < 0 requires only a short 2's complement integer addittorp,. — loge’ for
the exponent computation which can be fastly computed inR@4A The fractional part of’ - |c| remains
unchanged.

« the dual-path floating-point adder is a fast architectoreperforming floating-point additions. The two paths
have each a bottleneck. For the close path, the bottlenehbk ieading zero counter, while for the far path, the
bottleneck is the large shifter. When one path adders are tisedwo bottlenecks appear on the critical path
and approximately double the latency of the operator. [padhadders were introduced to reduce the operation
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Figure 22: Midpoint-radius addition architecture

latency. Thus, the close path is only used for performingtenig of X andY’, wheresign(X) xsign(Y) = —1
and|Epr — E.T,‘pxl <1.

Now considering that (o4 3) > 0 and that’ - |c| > 0, i.e. the addition operands are greater or equé the
floating point additiona (¢’ - |¢| + o + ) is implemented using only the far path of the FPAdder, thuinga
appropriately half of the area of a FPAdder.

4.2.2 Subtraction

For infimum-supremum representation of intervals, theltedthe substractings from A is:
C = [e1,co) Whereey = V(ay — by) andes =A (aq + by)

In architectural terms, substraction in infimum-suprem@presentation has the same architecture as addition (see

figure[19).
For intervals represented in midpoint-radius form, thelltesf substracting the intervdp from A is:

C =< ¢, > wherec = o(a —b) andy = (¢’ - |¢| + a + 3) (1)

The architectural considerations are similar as for adiditfigure 22).

4.2.3 Multiplication

For infimum-supremum representation of intervals, thelteduhe multiplying A and B depends on the position of
the interval ends with respect to the origin (signs of therivel ends). Therefore] - B gives [16]:

‘ by >0 b1 <0< by by <0
a; >0 [V(a1 . bl), A ((J,Q . bg)] [V(az . bl), A~ (a2 . bg)] [V(ag . bl), A (a1 . bg)}
a1 < 0<ay [V(al . bg), A (CLQ . bg)] [5, C] [V(ag . bl), A (a1 . bl)}
as < O [V(a1 . bg), A (a1 . bl)] [V(al . bg), A (a1 . bl)] [V(ag . bg), A (a1 . bl)}

wherez = min(V(ay - ba), V(ag - by)) and¢ = maz(a (a1 - b1), A (ag - by)).
The architecture of this operator is presented in figure 2@rd& are a few considerations that need to be made:

< The four floating-point multipliers of this architectureeaspecial in the sense that they output two results. The
difference between the two outputs is that the first outphesésult with rounding towardsoo and the second
towards+oco. At internal level, this translates to replacing the roumgdiogic for correct rounding with the logic
for rounding towards-oco and+oc. In terms of area, the new rounding logic has as size two tiarger than
the one which performes correct rounding.
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Figure 23: Infimum-Supremum multiplication architecture

e The circuitry which computes thewax and themin should be implemented using the fast-carry logic present
on current FPGAs. At the architectural level, this functi@re translated as comparisons on integer numbers
(the floating-point number is seen as an integemgn+ wp + 1 bits). This comparison is most of the time
implemented combinationally while running at high freqcies. However, when this circuit becomes the bot-
tleneck of the architecture in terms of latency, pipelingfghis circuit is needed. This will consequently lead
to delaying all the multiplier outputs so they become syonfred with the outputs from the min/max circuitry.
The cost of this synchronization is high in the number of stk required.

¢ The selection logic is implemented with multiplexers amgheinds only on the signs of the interval ends of the
inputs.

For intervals represented in midpoint-radius form, thelitesf multiplying the intervalA with B is:
C =< ¢,v7 > wherec =o(a-b)andy =a (n+¢ - |c| + (Ja| + @) 8 + a|])

In the radius computation of the resujtdenotes the smallest representable positive floating point
The are several considerations regarding the midpointsadultiplier architecture (figure 24):

 due to input constraints, all the floating-point addershaf &rchitecture contain only the far path. Moreover,
these adders have a rounding logic for rounding only towassts

« there is a number of three floating-point multipliers amuagch two use round towardsoo and one performes
correct rounding.

* the exponent addition is a short operation which does no¢igdly require pipelining. Therefore, the output of
this operation has to be delayed with the equivalent of twatifhg point additions. This increases the number of
registers used by the operator.

« the operator latency is high, with a latency given by therfola:

latency =max(FPMultiplier,, F P Adder,, F P Multiplier,)+
max(F P Multiplier,, FPAdder,)+
2F PAdder,

4.2.4 Division

For infimum-supremum representation of intervals, theltegithe dividing A by B depends on the position of the
interval ends with respect to the origin and whether or netitterval B contains the origin. For the case wheh B:

‘ by >0 by <0
ar >0 [V(a1/b2), & (az/b1)]  [V(az/b2), A (a1/b1)]
a1 <0<ay | [V(a1/b1), 8 (az/b1)]  [V(az/b2), A (a1/bs)]
az <0 [V(a1/b1), & (az/b2)]  [V(az/b1), & (a1/b2)]
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Figure 25: Infimum-supremum division architecture

In the case whefi € B we have:

‘bl_bgzo by <by=0 b1 <0< by O:b1<b2
a1 >0 [+NGN NGN] [V(ag/bl),—FOO} [V(ag/bl),A (ag/bg)]* [ al/bg)]
a1 <0< ay | [-00, o0 [—o00, +00] [—o00, +od] [~00, +oq]
ag < 0 [+NCLN NCLN] [7OO7A (al/bl)] [V(al/bg),A (al/bl)]* [V(ag/bl) ]

The architecture of the operator is presented in figure 28orsists of two floating-point divisors preceded by
combinational logic. The combinational logic selects thgrfinputs of the two divisors function of the exception bits
and the signs of the inputs. In addition, an additional bfirisvided to the output which selects between the interval
type. A value of 1 for this bit suggests that the interval ishef form|[—oo, ¢1] U [e2, +00] and a value of 0 suggests
that the interval type i&, c2]. In terms of cost, the division operator for infimum-supreminterval representation
requires two floating-point divisors.

In the case of the midpoint-radius interval representatios division requires many more elementary operations.
Firstly, in order to computel/B one needs to compute the inversefdfind then multiply this byd. Formally, the
division of A by B is written as:

C=Ax(1/B)
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The inverse of B is computed according to the formula giveiRbynp [17]. Thatis(C' = 1/B with:

c1 = V(1/(|bl + 5))

¢y = (1/(]b] = B))
c=V(c1+0.5x%x (ca —c1))
v=A(c—c1)

¢ = sign(B) X ¢

The architecture of the inversion operator is given in fig@Be It basically consists of four floating point adders,
out of which one contains only the far path of the additiord &mo inverters. In order to compare the architectures
for the two representations, we can consider that the FP@iyonents of figure 25 are in fact floating point inverters
followed by floating point multipliers. In this case, thefdiience between the two architectures is determined only by
the difference between the areas of the adders and mulsiplihe importance of this difference decreases when we
consider the fact that in the case of double-precision, tha af a FPMultiplier is 8 times smaller than the area of a
FPDiv, and the area of FPAddition is 4 times smaller than tka af FPDiv (results obtained with Xilinx CoreGen).

Consequently, the final architecture of the divisor requaee more multiplication of the inversion result (1/B) by
A. This is done using a multiplier as presented in figePe

The division algorithm proves more costly in the case of thdpoint-radius representation. However, the division
generally proves costly for the FPGA, a double precisiofisdiy generated with CoreGen for a Virtex4vIx15 board
occupies more than half of the slices of the target but is tbfutput a result at each 260MHz, with a latency of 57
clock periods.

Now that we have designed all the interval arithmetic operatchitectures, let us take an application which could
benefit from the FPGA acceleration in computing intervahanietic.

4.3 Ray tracing of implicit functions

In graphics, geometry is often modeled explicitly as a pigse-linear mesh. However, one alternative is a higheeiord
analytical representation in implicit or parametric forivhile implicit have not experienced as widespread adoption
as parametric surfaces in 3D modeling, they are common ier dikelds, such as mathematics, physics and biology.
Moreover, they serve as geometric primitives for isosuafaisualization of point sets and volume data. An implicit
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Table 3: Possible implicit functions for ray tracing usimgeirval arithmetic

surface S in 3D is defined as the set of solutions of an equation

f(a:,y,z) =0

wheref : Q C R®* — R. For our purposes, assume this function is defined by anytcelexpression. In ray tracing,
we seek the intersection of a ray under the following form:

P(t) =0 +tD
with this surface S. By simple substitution of these porittoordinates, we derive a unidimensional expression
fi(t) = f(Ox +tDy, 0y +tDy, 0, 4 tD)

and solve wherg;(t) = 0 for the smallest > 0.

Ray tracing is a global illumination based rendering methHottaces rays of light from the eye back through the
image plane into the scene. Then the rays are tested aghiolsjezts in the scene to determine if they intersect any
objects. If the ray misses all objects, then that pixel igigketo the background color. Ray tracing handles shadows,
multiple specular reflections, and texture mapping in a eagy straight-forward manner.

The basic idea behind ray tracing using interval arithmegiees on the fundamental properly of inclusion of
interval arithmetic. This property can be used in ray trgdor identifying and skipping empty regions of space. In
the case of the 3D space, the inclusion property statestiytiaction f : O C R3 — R (where() is an open subset
of R%) and a domain boB = X x Y x Z C () the corresponding interval extensiéh: B — F(B) is an inclusion
function of f , in that

F(B) C f(B) = f(z,y,2)|(z,y,2) € B

EvaluatingF' by interval arithmetic gives a simple and reliable rejettiest for the box B not intersecting S. The
overestimation introduced by interval arithmetic may eanwultiple iterations to remove a box B, if the ray is not
intersecting it.

Technical details of the algorithm are omitted here (seaildein [18]). Two of the implicit functions which
can be represented by using the interval arithmetic operatie presented in table 3. As it can be observed, the
equations contain only shifts, power, addition and sulita®perators. This operations are fast on FPGA. Moreover,
the application permits to experience with different pseris using both the infimum-supremum representation or the
midpoint-radius representation. Furthermore, the titivigarallel description of the algorithm makes it suited foe
acceleration using FPGAs. It might nevertheless be iniegeto find the limits of the perceived quality for a certain
function. This would offer a compromise between renderinglity and speed.

Additionally, this is an application for which the problerarmsantic is more suited for the midpoint-radius rep-
resentation. It feels more comfortable to define a box in a B&ts by it's center and it's radius. Midpoint-radius
representation often requires more computations due twtireding errors appearing when computing the center. We
can simplify the operator architectures by overestimatirggresult. Consequently, we can experience with reducing
the area of the operators and thus overestimating more $hé e¢ the benefit of increased parallelism due to smaller
operator size.
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5 Conclusions and future work

A few months ago, FloPoCo consisted of a small framework witle operator (FPConstMultiplier). During the
past months it has grown much faster than the initial roadfoegrasted. Although not all operators are finished,
core operators like IntAdder, IntMultiplier, FPMultipti@re reaching maturity while others like FPAdder, Karagsub
multiplication, Leading Zero Counter, DotProduct stillegesome attention.

We have proved that the operators generated by FloPoCossutmgeneric ones present in generic floating-point
libraries. We have also shown that FloPoCo can competexX@lioreGen, a state of the art core generator for Xilinx
FPGAs. Moreover, FloPoCo offers what no other products enntlarket do: different input/output precision for
all floating-point operators together with frequency dnigrchitecture generation. The latter is possible due to the
innovativeautomatic pipeliningeature present in FloPoCo.

The knowledge gained while implementing and integratireséhoperators in FloPoCo determined us to conduct
a study on the current opportunities for interval arithmeth FPGAs. We chose the two most common interval
representations: infimum-supremum and midpoint-radius.aWalyzed arithmetic operators in the context where, for
each representation, the set of input/output intervalsanaghset ofF. We designed the architectures for each of the
basic operations: addition, subtraction, multiplicatéom division. We provided a reality check on the impleméotat
and architectural requirements of each operator. Howéverproposed architectures remain to be implemented and
tested in this context. Therefore, we have proposed a pehapplication for that. Ray tracing appears often in
computer graphics for rendering complex scenes. It regurassive floating-point computations. The parallel nature
of the problem makes it an ideal candidate for acceleratinging FPGAs. This is partially due to the fact that the
implicit functionswhich are to be evaluated contain only basic operationstwdd@a be implemented at high frequencies
within FPGAs.

Future work include completing this study with an appliecatimplementation. We will also work on other opera-
tors, especially in the dot product family.
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