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Abstract

Accelerating the execution of algorithms involving floating-point computations is currently a necessity in the sci-
entific community. A solution – FPGAs – are believed to provide the best balance between costs, performance and
flexibility. The FPGA’s flexibility can be best exploited when used to accelerate ”exotic operators”(log, exp, dot
product) and operators tailored for the numerics of each application. These requirements gave birth to FloPoCo, a
floating-point core generator written in C++ available under GPL at1.

The purpose of this work was to bring FloPoCo to maturity, by framework stabilization and operator implemen-
tation. In term of framework stabilization we have implemented a novelautomatic pipeline generationfeature. In
term of implemented operators, our work includes the basic blocks of FloPoCo: IntAdder, IntMultiplier, FPMultiplier,
DotProduct, Karatsuba multiplication, FPAdder, LongAccumulator.

The obtained results are promising, ranking higher than theresults obtained by FPLibrary2 and not far from the
operators generated with Xilinx CoreGen3. However, we generate portable VHDL code which is target independent,
while CoreGen work only with Xilinx FPGAs. Nevertheless, work is still needed to bring some operators to CoreGen
level.

We also studied the possibilities to implementinterval arithmeticoperators on FPGAs. We have proposed and
discussed architectures for the four basic operations, forboth infimum-supremum and midpoint-radius representations.
We have also proposed an application for testing different trade-offs in terms of precision and size of these operators.

1http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo
2http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/
3http://www.xilinx.com/ipcenter/coregen



1 Introduction

1.1 Floating-Point Arithmetic

Several different representations of real point numbers exist, for instance thesigned logarithm[1], floating slashand
the floating-point[2] representations. Among these, by far the most popular isthe floating-point one. It’s definition
can be stated as:

Definition. In a floating point system of baseb, mantissa lengthn and exponent rangeEmin...Emax, a number
t is represented by a mantissa (or significand)Mt = t0.t1...tn−1 which is an-digit number in base b, satisfying
0 ≤ Mt < b, a signSt = ±1, and an exponentEt, Emin ≤ Et ≤ Emax, such that:

t = St × Mt × bEt

To ensure the uniticity of representation it is usually required that1 ≤ Mt < b (a non-zero first digit).
The IEEE-754 standard defines the representation of floating-point single and double precision numbers [2]. These

are the most common floating-point formats provided by computer hardware. The parameters of these formats are
presented in table 1.

Name b n Emin Emax Max Value

single precision 2 23+1 -126 127 3.4... × 1038

double precision 2 52+1 -1022 1023 1.8... × 10308

Table 1: IEEE 754 single and double precision floating-pointformats

Rounding errors are inherent in floating-point computations. The simplest operations, like the sum or product
of floating-point numbers, do not always generate a representable floating-point number for the result. In order to
represent the result in the floating-point system under consideration, it might need to berounded. We denote by
machine numberthe floating-point number which can be exactly represented in a floating-point system.

The IEEE-754 standard defines four accepted rounding modes [2]:

• rounding towards−∞: ▽(x) is the largest machine number less than or equal tox;

• rounding towards+∞: △ (x) is the smallest machine number greater than or equal tox;

• rounding towards0 : Z(x) is ▽(x) whenx > 0 and△ (x) whenx ≤ 0

• round to nearest :◦(x) is the closest machine number whenx is between two machine numbers. Whenx is
exactly in the middle of two machine numbers then the one which isevenwill be returned.

1.2 Field Programmable Gate Arrays

Field Programmable Gate Arrays or for short FPGA(s) are partof a larger family of reconfigurable hardware. They
were first introduced in 1985, by Xilinx®. In present time, the FPGA market has grown considerably, large companies
like Altera® or smaller ones like Actel® becoming more and more influent.

At a structural level, an FPGA consists of three parts [3]:

• a set ofconfigurable logic blocks (CLB),

• aprogrammable interconnection networkalso called the switch matrix,

• a set ifprogrammable input/output cellsaround the device.

The top-level view of an FPGA architecture is presented in figure 1. The logic in an FPGA chip is organized hier-
archical. The names and notations differ from manufacturerto manufacturer, but the organization is mostly the same.
For example, in the case of Xilinx®FPGAs: at the top level of the hierarchy, defining the most generic organization
of logic is the CLB, next are the slices 2, which are the constituents of the the CLBs. Depending on the FPGA, the
number of slices in a CLB can be different.

At low level, the implementation of a function in an FPGA translates to the following steps:
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Figure 1: The basic architecture of an FPGA chip

• the function to be implemented is partitioned into moduleswhich can be implemented into CLB,

• using the programmable interconnection network, the CLB are connected together,

• these are further connected to programmable I/Os for completing the implementation.

1.2.1 Slice architecture

Let us now consider the features of Xilinx®Virtex IV FPGA which are relevant to this work. The CLBs present in this
FPGA contains four slices. A simplified diagram of the slice structure is presented in figure 2. The slices are equivalent
and contain: two function generators, two storage elements, a fast carry chain, logic gates and large multiplexers [4].
It must be noted that Altera®chips share the same functionality.

The function generators are represented by configurable 4-input look-up tables (LUTs). The LUTs can be either
used as 16-bit shift registers or as 16-bit distributed memories. In addition, the two storage elements are either edge
triggered D-type flip-flops or level sensitive latches.

Each CLB has local fast interconnect resources for connecting internal slices, and connects to a switch matrix
to access global routing resources. The fast carry chain uses dedicated routing resources of the FPGA. It is used to
implement fast additions, multiplications and comparisons.

1.2.2 DSP blocks

In addition to the previous, most FPGAs today have all the discrete elements essential for digital signal processing
(DSP). The modern DSP blocks are dedicated silicon blocks with dedicated, high-speed routing. The internal architec-
ture is different from manufacturer to manufacturer but they generally share the same functionality.

LUT

CE

DCarry

CLR

Q

LUT

CE

DCarry

CLR

Q

Figure 2: The basic architecture of an FPGA slice
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Figure 3: The Xilinx Virtex IV DSP48 block

For instance, the DSP block of a Xilinx Virtex IV FPGA 3 can either implement: an 18 bit x 18 bit signed integer
multiplication, a multiplication followed by a 48-bit accumulation (MACC), or a multiplier followed by an adder/sub-
tracter. The DSP blocks have built-in pipeline stages whichprovide enhanced performance for a throughput of up to
500 MHz. Moreover, due to their fabrication process the DSP blocks are also very power efficient.

The DSP blocks of the Altera Stratix device family have four 18x18-bit multipliers that can also be configured to
support eight 9x9-bit multiplication or one 36x36-bit multiplication for different applications. The DSP block also
contains an adder/subtractor/accumulator unit can be configured as an adder, a subtracter, or as an accumulator on
9-bit, 18-bit, or 36-bits, as necessary. In the accumulatormode, the unit may act as a 52-bit accumulator useful for
building double-precision floating-point arithmetic. However, the DSP blocks in Stratix devices run at a maximum of
333 MHz.

2 State of the art

2.1 Floating-point computation using FPGAs

Most scientific algorithms require some form of fractional representation for their internal variables. In most popular
programming languages the solution is to declare variablesas floating-point numbers. The representation of these
numbers is often based on one of the two IEEE-754 floating-point formats (see table 1).

It is generally believed that reconfigurable logic (such as the FPGA), has the potential to speed up many of these
scientific algorithms. Due to modest initial densities of FPGAs, porting scientific algorithms on them usually meant
transforming all the internal variable representation into fixed point. However, in some algorithms, the dynamic range
of variables is impractical for a fixed point implementation. Together with the commodity of floating-point formats,
the motivation for implementing floating-point operators on FPGA conducted numerous studies ([5], [6], [7], [8]).
However, floating-point computations started to become feasible on FPGAs only during the mid 90’. This was mainly
due to the increases in speed and density of FPGAs.

The studies conducted on this subject took two different approaches.
For the first, in order to take full advantage of the FPGA resources, the operators are tailored in order to conform

to specific input/output constraints constraints. Shiraziet al. [6] provided two custom floating-point formats (16 bits
and 18 bits total) and designed specific architectures for them of the operations of addition and multiplication. In [9],
Shirazi et al. suggest customizing the representation of floating-point numbers in order to exploit the flexibility of
reconfigurable hardware.

Consequently, many parameterized floating-point operators have been proposed. Some of the parameterizations
take advantage of specific characteristics for the deployment target [10]. Other are simply parameterized in precision
so that a good compromise between precision, speed and accuracy is obtained [7]. Some parameterizable operators
are distributed under the form of generic libraries ([11], [1], [12]) so that the operators can be used with off-the-shelf
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FPGAs.
The second research approach consisted of designing singleand double-precision operators for FPGAs and exam-

ining the speedup of these operators when compared to those present in high-end general purpose processors. The
first feasible single-precision implementation results were presented in [13] but no significant speedup was obtained
on a Pentium processor. In [8] Underwood presented designs for single and double precision IEEE compliant floating-
point addition, multiplication, and division. His analysis on the trends of floating-point computing estimates that the
performance peak of FPGAs will surpass by one order of magnitude that of general-purpose processors in 2009.

Another idea was to use not only custom precision, but also custom operators and architectures. Following this
approach this order of magnitude was already reached in 2005([14] and [15]) for elementary functions. This further
conducted to the idea of building a tool for generating custom operators for FPGAs, exotic operators, ones which would
not be economical for implementing in general purpose processors.

3 The FloPoCo project

3.1 Context

With the current approach of parameterizable libraries forVHDL operators reaching it’s limits, the time came for
exploring a different perspective in generating VHDL operators. This motivation gave birth to FloPoCo, a floating-
point core generator for FPGAs.

FloPoCo is the successor of FPLibrary, a library of parameterizable floating-point operators for FPGAs. Developing
FloPoCo became a necessity due to problems regarding the user experience in using the library and the difficulties
encountered during late project development. From the user’s point of view, the unpleasant experiences were regarding:

• importing the library to the project; tedious work in adding files manually to project.

• the difficulty of re-pipelining operators.

• lack of design space exploration, i.e. due to their genericnature, libraries cannot choose the best among possible
implementation solutions.

The advantage with having a generator of operators is that the VHDL code remains clean of generic and recursive
code. The complexity of the code is transferred from the VHDLsources to the generation software. Consequently,
the VHDL code is simplified and synthesis takes less. Moreover, the generation of operators may take into account
different architectural parameters (number of LUT inputs,carry propagation delay, etc.) and also constraints imposed
by the user regarding area, speed or accuracy. Therefore, generators offer the possibility to adapt the generated operator
pipeline to multiple constraints. Additionally, generators allow a high-level input specification for operators together
with a complex design space exploration in order to find the design which best fits the input constraints.

The purpose of FloPoCo is to generate state of the art operators which satisfy multiple constraints. We now present
detailed examples for operators we implemented in FloPoCo.

3.2 Integer addition

We consider here the addition of two positive integers represented in radix 2. The global architecture of this adder is
shown in the left of figure 4. The inputs of this operator areX andY satisfying0 ≤ X,Y ≤ 2n − 1 and the carry in
bit, denoted bycin ∈ {0, 1}. The output are the sum0 ≤ S ≤ 2n − 1 and the carry out bitcout ∈ {0, 1} such that:

X + Y + cin = 2ncout + S

In the case whenn = 1 this the above formula reduces to a primitive called thefull-adder represented in the right
part of figure 4.

FloPoCo is able to generate a range of operators performing integer addition. Available parameters for this operator
comprise:

• pipeline=yes/no. The architecture generated according to this input parameter is either sequential if the
parameter value is “yes”, or combinatorial otherwise.
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Figure 4: Left: genericn-bit adder architecture. Right:1-bit full-adder module
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Figure 5: Obtained frequencies against requested frequencies

• frequency=f. This option, used together withpipeline=yes determines the pipeline structure of the
output operator. The pipeline is modified so that the frequency of the output operator be as close as possible
to the requested frequency . Figure 5 plots the obtained frequencies against requested frequencies for different
sizes of integer addition. The solid line plots the optimal output frequencies for each of the input case. One
can observe that the obtained frequencies for this operatorare always greater than the optimal frequencies. The
difference between these frequencies is larger for small addition size but this comes at no expense from the
resource point of view. For instance, the addition of two 16-bit numbers realized by the IntAdder16 component
has an output frequency of more than 500MHz without using anyregisters to pipeline this addition. Moreover,
for IntAdder 256 the obtained frequencies are closely controlled through addition pipelining.

In order to reach the requested input frequencies, FloPoCo needs to pipeline operators. FloPoCo implements
automatic pipelining, i.e. the register levels are inserted into the operator architecture automatically. In order for an
operator to reach a certain frequency, the critical path delay of that operator needs not be greater than the period at the
given frequency. Due to complex combinatorial operations,the input signals accumulate delays from the circuit’s input
towards the output. The registers represent memory elements (storage) which are able to store the information delivered
at their input, when requested. By inserting memory elements for storing the intermediary results in an operation, we
stop the accumulation of signal delays, and thus we are able to constrain our circuit delays under a given bound.

As addition uses the fast-carry logic, we are able to derive arather precise mathematical formulation for the delay
of ann-bit adder. This delay is greatly influenced by the specific characteristics of the deployment target:

delaynBitAdd = delayLUT + n · delayCarryPropagation

wheredelayLUT represents the LUT delay, anddelayCarryPropagation represents the delay for propagating the
carry bit between adjacent logic elements by using the dedicated fast carry logic routing. For a given input frequency
f to be reached, the accumulated delays need to be smaller than1/f . If we impose this on the above equation and
extractn we have:
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delayLUT = 1.5 · 10−9

delayCarryPropagation = 3.4 · 10−11

f = 400 · 106 (400 MHz)

Computingn:

n =

⌊

1/f − delayLUT

delayCarryPropagation

⌋

= 29

X -> X[79..58] X[57..29]
X[28..0]; Y -> Y[79..58]
Y[57..29] Y[28..0];

CX[28..0]Y[28..0]Y[79..58] X[79..58]

R[79..0]

X[57..29]Y[57..29]

Figure 6: Pipelining the 80-bit addition of X and Y at 400 MHz on Virtex 4 device. Pipeline levels for splitting an
80-bit addition
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n <
1/f − delayLUT

delayCarryPropagation

with the constraint thatn is always an integer value. If the result of this equation is less or equal to 0, it follows
that the requested frequency cannot be reached for the n-bitaddition and consequently, the addition needs to be broken
into smaller additions. An example of this is shown in figure 6where the input n-bit addition needs to be broken into
tree parts so that the requested frequency is reached.

Figure 7 shows the dependency between the requested frequency and the number of slices used by the architecture
IntAdder 128. For the simple pipeline model of the integer adder, one can observe a linear increase in the number
of slices used by the architecture. On the other hand, we see in figure 8 that the number of pipeline levels of the
architecture has a more than linear increase.

Now that we studied and implemented the operator performingthe integer addition, let us move-on to a more
complex operator – the integer multiplier.

3.3 Integer multiplication

We consider here the multiplication of two positive integers represented in radix 2. The global top level schematic for
an n-bit multiplier is shown in figure 9. The inputs of this operator areX andY satisfying0 ≤ X,Y ≤ 2n − 1 and the
output is the product ofX andX having the property0 ≤ P ≤ 22n − 1.

The FloPoCo implementation of integer multiplication takes full advantage of the special FPGA target features
such as DSP blocks. As previously stated, these blocks are able to perform multiplications of unsigned numbers of up
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Figure 9: Top level schematic of an n-bit integer multiplication

to 17-bits wide in the case of Virtex IV device.
Let us denote byX andY then-bit input numbers which we want to multiply and byr the width in bits of the

embedded multipliers. We now look at the multiplicationX × Y as a multiplication in radix2r. If necessary, we pad
the inputs with zeros to the left such that the width of the inputs transforms fromn to nr wherenr is the smallest
number satisfying the propertynr ≥ n and nr

r
∈ N.

The two input numbers are now divided intop parts, each part containingnr

r
digits. We denote the parts forX by

X1,...,Xp and similarly for Y. The denote product of two 1-digit radix2r numbers by:

Xj × Yi = Pi,j
H · 2r + Pi,j

L.

wherePi,j
H andPi,j

L are the are the two digits of the result.
Now writing the multiplication in radix2r becomes:

XpXp−1...X1 × YpYp−1...Y1 =

p
∑

j=1

p
∑

i=1

Pi,j
L · ri+j +

∑

j

∑

i

Pi,j
H · ri+j+1

This equation shows how the n-bit base 2 multiplication can be transformed intop2 1-digit base2r multiplications
and summations. The basis2r multiplication can be directly feed to the DSP block on the FPGA. The result of this
multiplications will now need to be shifted and added. Fortunately, we can concatenate into bit-vectors with the names
Lowi the products of the formPi,j

L and with the nameHighi the products the formPi,j
H for fixed values ofi. Now,

the only shifts which appear are those between bit-vectorsLowi andLowi+1 and correspondingly betweenHighi and
Highi+1 and one global shift on all bit-vectors of the formPi,j

H .
An example of how this is transformed into an architecture isgiven in figure 10 for the case whenp = 3. Ad-

ditionally, a simplified version of the adder structure which sums all partial products is shown. The low part of the
final product is obtained gradually by summing available vectors. For instance, the least significant r-bits of the final
product are available immediately after the multiplications. Following the addition of the first two vectors from the
low part of the result, the next r bits of final product are computed by summing-up the least significant r bits of the first
two low bit-vector sum (Low1+Low2), and the least significant r bits of the first bit-vector of the high part of the result
(High1). Then the process repeats.

For simplicity of representations technical details were removed from the schematic. The technical details include
pipelining of the long additions between concatenation vectors, together with pipelining of the last addition which
computes the high part of the result. These pipeline stages permits arbitrary frequencies to be attained by this operator.

This architecture is optimized for the use of DSP blocks as itis performing the computation of the partial products
in parallel. The results showing the dependency between therequested frequency and the obtained frequency for the
architectures IntMultiplier24 24 and IntMultiplier53 53 are shown in figure 11. This integer multiplications have the
same size as the mantissa multiplications for the IEEE-754 single and double precision representations. We remark that
in general, we provide higher frequencies than requested. The exceptions can be explained with the help of figure 13
which presents the dependency between the requested frequency and the number of pipeline levels of the architectures.
We can observe the rapid increase in the number of pipeline levels as the requested frequencies grow above 200MHz.
Consequently, the additional number of registers insertedfor the pipeline levels causes the area of the architecture to
increase. Therefore, the routing delays become more significant and reduce the frequency of the architecture. In this
cases the solution is to request larger frequencies than desired, and repeat the process if unsuccessful.

Let us pass to an even more complex operator, the floating-point multiplier.
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Figure 10: A example architecture of pipelined addition tree for integer multiplication. Each input is split into three
chunks

3.4 Floating-point multiplication

We now consider the multiplication of two floating-point numbers,X andY . These operands have the representation
(M∗

x , Ex) and(M∗

y , Ey) respectively. The significands of the operands are signed and normalized. The product ofX
andY is written as:

Z = X × Y

whereZ is denoted by the pair(M∗

Z , EZ) which is also signed and normalized. From the algorithmic point of
view, the floating-point multiplication has the following steps:

1. multiply the significands and add the exponents:

M∗

Z = M∗

X × M∗

Y

EZ = EX + EY

2. normalizeM∗

Z and update exponent accordingly,

3. perform rounding,

4. set the exception bits.
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The floating-point (FP) number format used in FloPoCo is inspired from the IEEE-754 standard [2]. The key idea
of the format is to represent numbers with a fixed-point normalized mantissa multiplied by an order of magnitude. This
representation is parameterized by two bit-widths:wE andwF . The floating-point number is now represented as a
vector ofwE + wF + 3 bits which is partitioned in4 fields as shown Figure 14. The description of the4 fields is given
below:

• exn (2 bits): the exception tag, used for infinities and NotANumber(NaN), zero.

• SX (1 bit): the sign bit;

• EX (wE bits): the exponent (biased byE0 = 2wE−1 − 1);

• FX (wF bits): the fraction (mantissa).

The top level diagram for floating-point multiplication is presented in figure 15. The architecture is based on that of
the integer multiplier, which is the main component of the floating-point multiplier. The FloPoCo implementation
of the FPMultiplier performs rounding to nearest, as described by the IEEE-754 standard. The details regarding
pipelining and it’s synchronization have been left out for the sake of simplicity. It must be noted however, that the
current architecture is able to multiply numbers having different precisions, output the result on the a desired precision
and adapt the pipelining levels to the desired input frequency automatically.

The dependency of the output frequency with respect to the input frequency is presented in figure 16. It can
be observed that the frequencies are usually better than expected, except when the frequencies become high. The
bottleneck in this case is the integer multiplier. The number of slices used by the FPMultiplier is shown in figure 17
together with the number of slices used internally by the integer multiplier. As we can observe, the overhead induced

0

2

4

6

8

10

12

100 150 200 250 300 350 400

P
ip

el
in

e
de

pt
h

Requested Frequency (MHz)

IntMultiplier 24 24
IntMultiplier 53 53

Figure 13: The dependency between requested frequency and the number of pipe levels for IntMultiplier24 24 and
IntMultiplier 53 53

9



2 1 wE wF

SX EX FXexn
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Figure 15: FPMultiplier top level diagram

by the rest of the circuitry of the FPMultiplier is less than the size of the integer multiplier. Figure 18 shows the growth
in number of pipeline levels of the generated architecture as the requested frequency increases. We can observe that
the growth rate is similar to the growth rate of the integer multiplier, suggesting again that this is the largest resource
consuming component of the FPMultiplier.

Let us now see where this results stand. For comparisons we used FPLibrary, a VHDL library of parameterizable
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floating point operators available at: http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/ for the case of the IEEE
single and double precision representations. The result are presented in table 2. In the case of single precision, the
operator generated by FPLibrary takes more than twice the area compared to the operator generated by FloPoCo (450
slices vs. 208 slices). The frequency of the FPLibrary operator is also much lower (163 MHz vs. 402 Mhz) than the
frequency of FPMultipler operator. Moreover, FloPoCo supports different precision for the inputs, and also different
precision for the output. This is not the case when working with FPLibrary.

We also made a rather unfair comparison with the Xilinx CoreGen tool, a core generator which is the state of the
art for Xilinx platforms. Table 2 shows the performances forthe operators generated by CoreGen. In the case of single
precision, the FloPoCo operator is not far behind in terms offrequency (471Mhz vs 402Mhz) and in terms of slices
used (171 slices vs. 208 slice). However, the latency of the our operator is only 6 when compared to 10 for the CoreGen
operator. Moreover, CoreGen only supports high speed modes, so in the case when a particular frequency is enough for
the operator, CoreGen generates the best operator it can, using the same amount of resources. For instance, for a single
precision operator at 100Mhz, FloPoCo uses 109 slices whereas CoreGen still uses 171 slices. Moreover, CoreGen
does not support different input precision. In the case of double precision operator we observe that when only 9 DSP
blocks are used by the CoreGen operator, this operator is slightly inferior to the one generated by FloPoCo. However,
when giving CoreGen the possibility to use the full number ofDSP blocks, it’s performance becomes superior to that
of FloPoCo. Nevertheless, CoreGen does not generate portable VHDL files and works only for Xilinx targets.

Unlike CoreGen, FloPoCo is a generic floating-point core generator. The internal code of FloPoCo is not architec-
ture specific, but parameterized function of the deploymenttarget. The aim of FloPoCo is to generate architectures for
any targets. For retargeting a specific operator, the code which generates the architectures does not need to be modified.
What is needed is the addition of a Target class bearing the internal characteristics of the deployment target. This way,
the portion of code which needs modifications is minor. However, the price that FloPoCo pays for being generic is that
it’s generated operators are still a little bit slower and larger than the state of the art operators generated by CoreGen.
This price becomes lower if we also consider that the time needed for deploying a new operator is greatly reduced.

Software Representation Frequency Slices DSP

FPLibrary sp 216 MHz 450 1
FPLibrary dp 163 MHz 1339 30
CoreGen sp 471 MHz 171 4
CoreGen dp 265 MHz 1016 9
CoreGen dp 361 MHz 469 16
FloPoCo sp 402 MHz 208 4
FloPoCo dp 309 MHz 1095 16

Table 2: Synthesis result for floating point multiplicationwith FPLibrary, CoreGen and Flopoco
(sp means single precision and dp means double precision)

3.5 Other operators

We have also implemented in FloPoCo the dual-path floating-point addition. However, this architecture needs more
work at the level of pipelining the leading zero counter component. This component uses long comparisons which
could be performed using the DSP blocks of modern FPGAs.

In order to reduce the number of DSP blocks used by the integermultiplication we have designed a combinatorial
version of the Karatsuba multiplication. Early results arepromising, since we have managed, for a 53 bit multiplication,
to reduce the number of used DSP blocks from 16 to just 9. We have currently in plan to pipeline this operator.

We have also worked on using these multipliers in specific architectures for dot product and sum of squares. Due
to lack of space we omit this work here.

3.6 Conclusion

We are now happy that automatic pipelining works well even for composed operators. So, we can now attack more
complex problems, for example, interval arithmetic operators which, at their basis, are composed of optimized basic
operators. We will try to develop operators which outperform their equivalents in general purpose processors, at least
in some cases.
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4 Opportunities in deploying interval arithmetic on FPGA

4.1 Notions of interval arithmetic

In real life, due to the inevitable measurement inaccuracy,the exact values of the measured quantities are unknown.
What are know are, at best, the intervals of possible values for those quantities.

When we use a computer to make computations involving real numbers, we have to use the finite set of floating-
point numbers that the hardware makes available. It is knownthat most real values do not have a finite floating-
point representation. The possibilities in representing real numbers in computers consist of either using floating-point
numbers obtained by means of rounding, or by using an interval consisting of two floating-point numbers with the
property:

f1 ≤ r ≤ f2 wherer ∈ R andf1, f2 ∈ F

Here,F represents the set of representable floating-point numbersandR the set of real numbers.
Interval arithmetic is based on the idea of bounding real values with representable intervals. On one hand, it

provides means for reasoning about all the possible resultsof a computation involving an input interval. On the other
hand, it is used to provide guarantees on the result of a floating-point computation, i.e. for a given computation, no
matter what rounding errors occur, the real result is alwaysincluded in the output interval. This is a fundamental
property of interval arithmetic and is called theinclusion property.

There are two common representations of intervals overR. First, we have theinfimum-supremumrepresentation
which denotes an interval by specifying it’s two ends:

[a1, a2] := {x ∈ R : a1 ≤ x ≤ a2} for somea1, a2 ∈ R, a1 ≤ a2

Second, we have themidpoint-radiusrepresentation which denotes an interval by specifying it’s center (also called
midpoint), and it’s radius.

< a,α >:= {x ∈ R : |x − a| ≤ α} for somea ∈ R, 0 ≤ α ∈ R

In this study we are concerned only with interval arithmeticoperations for which intervals are represented overIF,
which is the set of intervals represented using floating-point numbers. The setFExp,Frac contains the floating-point
numbers having an exponentExp and a fractional partFrac. For instance, the IEEE-754 single precision floating-
point representation is denoted byF8,23. Consequently, the following relation holds over the set offloating-point
numbers:

F =
⋃

i,j∈N

Fi,j

The two different interval representations yield different IF sets. For instance, not all intervals which are repre-
sentable in midpoint-radius format have the equivalent in infimum-supremum representation. Accordingly, we cus-
tomize the notation for the set of intervals derived from thenotation in the two cases. As a result, the notation for the
set of intervals using the infimum-supremum representation, is IF

IS
Exp,Frac. Redefining the set of intervals with this

notation gives:

IF
IS
Exp,Frac := {[a1, a2] : a1, a2 ∈ FExp,Frac, a1 ≤ a2}

In the case of the midpoint-radius representation, an optional parameter appears in the notation denoting the
floating-point characteristic of the radius. Consequently, we denote the set of floating point intervals byIF

MR
(Exp,Frac),(Expr,Fracr).

Using this new notation, the set of intervals using the midpint-radius representation is:

IF
MR
(Exp,Frac),(Expr,Fracr) := {< a,α >: a ∈ FExp,Frac , α ∈ FExpr,Fracr

, α ≥ 0}

Throughout this section, whenever the center and the radiusbelong to the sameFExp,Frac, we forget the second
parameter of the representation for the set of intervals determined by using the midpoint-radius representation.

Our efforts to study the opportunities of interval arithmetic on FPGAs are motivated by the desire to provide more
performance, at least in some situations, than general purpose processor can offer for interval arithmetic operators.
Particularly, for the two representations of intervals, wedesign optimized architectures and compare these architectures
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Figure 19: Infimum-Supremum addition architecture

in terms of resource usage. We then present an application for which the operator architectures designed for FPGAs
have the opportunity to accelerate computations.

4.2 An analysis of algebraic operations

In this section the four basic operations: addition, substraction, multiplication and division will be analysed for each
of the two interval representations. Issues regarding resource requirements and performance expectations will be also
covered.

Let us now define the intervals which will be used to perform the basic operations:
Let A = [a1, a2] andB = [b1, b2] denote interval operands having the infimum-supremum representation, where

a1, a2, b1, b2 ∈ F anda1 ≤ a2, b1 ≤ b2, A,B ∈ IF
IS
Exp,Frac. Let C = [c1, c2] with c1, c2 ∈ F andc1 ≤ c2 denote the

result of an interval operation in infimum-supremum representationC ∈ IF
IS
Exp,Frac.

Let A =< a,α > andB =< b, β > be intervals in midpoint-radius representation for whicha, α, b, β ∈ F

and α ≥ 0, β ≥ 0. Let C =< c, γ > with c, γ ∈ F and γ ≥ 0 denote the result of the interval operation in
midpoint-radius representation. When we talk about operators in midpoint-radius representation, we say thatA,B ∈
IF

MR
(Exp,Frac),(Expr,Fracr).

4.2.1 Addition

In the case of infimum-supremum interval representation, the result ofA + B is [16]:

C = [c1, c2] wherec1 = ▽(a1 + b1) andc2 =△ (a1 + b1)

The architecture of this operator is presented in figure 19. For this interval addition to be implemented in an FPGA,
the cost is of two floating-point adders as the one shown in figure 20. The left adder one computes the suma1 + b1

rounding towards−∞ while the right one computes the suma2 + b2 rounding towards+∞.
For general-purpose processors, the possibilities in accelerating floating-point computations are by use of pipelining

the operations or by use of a single instruction multiple data (SIMD) instruction set with support for floating-point
operations. The first who gave support to the instruction setwas AMD© with the 3dNow!© technology, and then, 1
year later came Intel© with the SSE© technology. This technologies permit multiple floating-point computations be
performed in parallel. Both instruction sets support the IEEE-754 rounding modes, but cannot use different rounding
mode in parallel for the same instruction.

Consequently, if a large number of interval additions need to be performed, then performing the all additions which
round towards−∞ and then all additions which round towards+∞ would give best performance for the processor.
This would however require extra programming overhead. Otherwise, the feature behind the SIMD technology cannot
accelerate the computations.

In the case of intervals represented in midpoint-radius form, adding two intervals reduces to adding their midpoints
and then adding their radii. As the result of the adding of twofloating-point numbers is not necessarily a floating-point
number, when adding the centers of the intervals, the error which occurs due to rounding might cause a violation of the
fundamental inclusion property. In order to prevent this, we must add to the sum of the radii a quantity which corrects
this rounding error.

So, the result of the additionA + B becomes [17]:

C =< c, γ > wherec = ◦(a + b) andγ =△ (ε′ · |c| + α + β)
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Figure 21: The overestimation caused by the correctly rounding the sum of midpoint values

The quantityε denotes the relative rounding error unit. For example, in the case of the IEEE-754 double-precision
format, ε = 2−52. Furthermore,ε′ is set to 1

2ε. Figure 21 shows the overestimation introduced by the midpoint
rounding in computing the result radius. This overestimation is caused by the termε′|c|. which is necessary for
preserving the inclusion property of the operation.

The architecture of this operation is presented in figure 22.We make some considerations form architectural point
of view:

• a data dependency appears between the computation of result midpoint and the computation of the result radius.
From technical point of view, this data dependency consistsin adding register levels for delaying the computation
of the radius. Fortunately, this is not necessary, due to thefact that the addition of midpoints and radii can be
performed concurrently as can be observed from figure 22. Moreover, no register levels need to be adders for
synchronization due to the fact that the floating-point adder has the same number of pipeline levels independent
of the rounding mode.

• the productε′ · |c|, wherelog ε′ < 0 requires only a short 2’s complement integer additionExpc − log ε′ for
the exponent computation which can be fastly computed in an FPGA. The fractional part ofε′ · |c| remains
unchanged.

• the dual-path floating-point adder is a fast architecture for performing floating-point additions. The two paths
have each a bottleneck. For the close path, the bottleneck isthe leading zero counter, while for the far path, the
bottleneck is the large shifter. When one path adders are used, the two bottlenecks appear on the critical path
and approximately double the latency of the operator. Dual-path adders were introduced to reduce the operation
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Figure 22: Midpoint-radius addition architecture

latency. Thus, the close path is only used for performing additions ofX andY , wheresign(X)∗sign(Y ) = −1
and|ExpX − ExpX | ≤ 1.

Now considering that△ (α + β) ≥ 0 and thatε′ · |c| ≥ 0, i.e. the addition operands are greater or equal to0, the
floating point addition△ (ε′ · |c| + α + β) is implemented using only the far path of the FPAdder, thus saving
appropriately half of the area of a FPAdder.

4.2.2 Subtraction

For infimum-supremum representation of intervals, the result of the substractingB from A is:

C = [c1, c2] wherec1 = ▽(a1 − b1) andc2 =△ (a1 + b1)

In architectural terms, substraction in infimum-supremum representation has the same architecture as addition (see
figure 19).

For intervals represented in midpoint-radius form, the result of substracting the intervalB from A is:

C =< c, γ > wherec = ◦(a − b) andγ =△ (ε′ · |c| + α + β) (1)

The architectural considerations are similar as for addition (figure 22).

4.2.3 Multiplication

For infimum-supremum representation of intervals, the result of the multiplyingA andB depends on the position of
the interval ends with respect to the origin (signs of the interval ends). Therefore,A · B gives [16]:

b1 ≥ 0 b1 < 0 ≤ b2 b2 < 0

a1 ≥ 0 [▽(a1 · b1),△ (a2 · b2)] [▽(a2 · b1),△ (a2 · b2)] [▽(a2 · b1),△ (a1 · b2)]

a1 < 0 ≤ a2 [▽(a1 · b2),△ (a2 · b2)] [z̃, ζ̃] [▽(a2 · b1),△ (a1 · b1)]
a2 < 0 [▽(a1 · b2),△ (a1 · b1)] [▽(a1 · b2),△ (a1 · b1)] [▽(a2 · b2),△ (a1 · b1)]

wherez̃ = min(▽(a1 · b2),▽(a2 · b1)) andζ̃ = max(△ (a1 · b1),△ (a2 · b2)).
The architecture of this operator is presented in figure 23. There are a few considerations that need to be made:

• The four floating-point multipliers of this architecture are special in the sense that they output two results. The
difference between the two outputs is that the first outputs the result with rounding towards−∞ and the second
towards+∞. At internal level, this translates to replacing the rounding logic for correct rounding with the logic
for rounding towards−∞ and+∞. In terms of area, the new rounding logic has as size two timeslarger than
the one which performes correct rounding.
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Figure 23: Infimum-Supremum multiplication architecture

• The circuitry which computes themax and themin should be implemented using the fast-carry logic present
on current FPGAs. At the architectural level, this functions are translated as comparisons on integer numbers
(the floating-point number is seen as an integer onwE + wF + 1 bits). This comparison is most of the time
implemented combinationally while running at high frequencies. However, when this circuit becomes the bot-
tleneck of the architecture in terms of latency, pipeliningof this circuit is needed. This will consequently lead
to delaying all the multiplier outputs so they become synchronized with the outputs from the min/max circuitry.
The cost of this synchronization is high in the number of registers required.

• The selection logic is implemented with multiplexers and depends only on the signs of the interval ends of the
inputs.

For intervals represented in midpoint-radius form, the result of multiplying the intervalA with B is:

C =< c, γ > wherec = ◦(a · b) andγ =△ (η + ε′ · |c| + (|a| + α)β + α|β|)

In the radius computation of the result,η denotes the smallest representable positive floating point.
The are several considerations regarding the midpoint-radius multiplier architecture (figure 24):

• due to input constraints, all the floating-point adders of the architecture contain only the far path. Moreover,
these adders have a rounding logic for rounding only towards+∞.

• there is a number of three floating-point multipliers amongwhich two use round towards+∞ and one performes
correct rounding.

• the exponent addition is a short operation which does not generally require pipelining. Therefore, the output of
this operation has to be delayed with the equivalent of two floating point additions. This increases the number of
registers used by the operator.

• the operator latency is high, with a latency given by the formula:

latency =max(FPMultiplier◦, FPAdder△, FPMultiplier△)+

max(FPMultiplier△, FPAdder△)+

2FPAdder△

4.2.4 Division

For infimum-supremum representation of intervals, the result of the dividingA by B depends on the position of the
interval ends with respect to the origin and whether or not the interval B contains the origin. For the case when0 /∈ B:

b1 ≥ 0 b2 < 0

a1 ≥ 0 [▽(a1/b2),△ (a2/b1)] [▽(a2/b2),△ (a1/b1)]
a1 < 0 ≤ a2 [▽(a1/b1),△ (a2/b1)] [▽(a2/b2),△ (a1/b2)]
a2 < 0 [▽(a1/b1),△ (a2/b2)] [▽(a2/b1),△ (a1/b2)]
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In the case when0 ∈ B we have:

b1 = b2 = 0 b1 < b2 = 0 b1 < 0 < b2 0 = b1 < b2

a1 ≥ 0 [+NaN,−NaN ] [▽(a2/b1),+∞] [▽(a2/b1),△ (a2/b2)]
∗ [−∞,△ (a1/b2)]

a1 < 0 ≤ a2 [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞]
a2 < 0 [+NaN,−NaN ] [−∞,△ (a1/b1)] [▽(a1/b2),△ (a1/b1)]

∗ [▽(a2/b1),+∞]

The architecture of the operator is presented in figure 25. Itconsists of two floating-point divisors preceded by
combinational logic. The combinational logic selects the four inputs of the two divisors function of the exception bits
and the signs of the inputs. In addition, an additional bit isprovided to the output which selects between the interval
type. A value of 1 for this bit suggests that the interval is ofthe form[−∞, c1] ∪ [c2,+∞] and a value of 0 suggests
that the interval type is[c1, c2]. In terms of cost, the division operator for infimum-supremum interval representation
requires two floating-point divisors.

In the case of the midpoint-radius interval representation, the division requires many more elementary operations.
Firstly, in order to computeA/B one needs to compute the inverse ofB and then multiply this byA. Formally, the
division of A by B is written as:

C = A × (1/B)
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The inverse of B is computed according to the formula given byRump [17]. That is,C = 1/B with:

c1 = ▽(1/(|b| + β))

c2 =△ (1/(|b| − β))

c = ▽(c1 + 0.5 × (c2 − c1))

γ =△ (c − c1)

c = sign(B) × c

The architecture of the inversion operator is given in figure26. It basically consists of four floating point adders,
out of which one contains only the far path of the addition, and two inverters. In order to compare the architectures
for the two representations, we can consider that the FPDiv components of figure 25 are in fact floating point inverters
followed by floating point multipliers. In this case, the difference between the two architectures is determined only by
the difference between the areas of the adders and multipliers. The importance of this difference decreases when we
consider the fact that in the case of double-precision, the area of a FPMultiplier is 8 times smaller than the area of a
FPDiv, and the area of FPAddition is 4 times smaller than the area of FPDiv (results obtained with Xilinx CoreGen).

Consequently, the final architecture of the divisor requires one more multiplication of the inversion result (1/B) by
A. This is done using a multiplier as presented in figure??.

The division algorithm proves more costly in the case of the midpoint-radius representation. However, the division
generally proves costly for the FPGA, a double precision divisor, generated with CoreGen for a Virtex4vlx15 board
occupies more than half of the slices of the target but is ableto output a result at each 260MHz, with a latency of 57
clock periods.

Now that we have designed all the interval arithmetic operator architectures, let us take an application which could
benefit from the FPGA acceleration in computing interval arithmetic.

4.3 Ray tracing of implicit functions

In graphics, geometry is often modeled explicitly as a piecewise-linear mesh. However, one alternative is a higher-order
analytical representation in implicit or parametric form.While implicit have not experienced as widespread adoption
as parametric surfaces in 3D modeling, they are common in other fields, such as mathematics, physics and biology.
Moreover, they serve as geometric primitives for isosurface visualization of point sets and volume data. An implicit
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0.5x5 + 0.5x4 − y2 − z2 xy

Table 3: Possible implicit functions for ray tracing using interval arithmetic

surface S in 3D is defined as the set of solutions of an equation

f(x, y, z) = 0

wheref : Ω ⊆ R
3 → R. For our purposes, assume this function is defined by any analytical expression. In ray tracing,

we seek the intersection of a ray under the following form:

~P (t) = ~O + t ~D

with this surface S. By simple substitution of these position coordinates, we derive a unidimensional expression

ft(t) = f(Ox + tDx, Oy + tDy, Oz + tDz)

and solve whereft(t) = 0 for the smallestt > 0.
Ray tracing is a global illumination based rendering method. It traces rays of light from the eye back through the

image plane into the scene. Then the rays are tested against all objects in the scene to determine if they intersect any
objects. If the ray misses all objects, then that pixel is shaded to the background color. Ray tracing handles shadows,
multiple specular reflections, and texture mapping in a veryeasy straight-forward manner.

The basic idea behind ray tracing using interval arithmeticrelies on the fundamental properly of inclusion of
interval arithmetic. This property can be used in ray tracing for identifying and skipping empty regions of space. In
the case of the 3D space, the inclusion property states that any functionf : Ω ⊆ R

3 → R (whereΩ is an open subset
of R3) and a domain boxB = X × Y × Z ⊆ Ω the corresponding interval extensionF : B → F (B) is an inclusion
function off , in that

F (B) ⊆ f(B) = f(x, y, z)|(x, y, z) ∈ B

EvaluatingF by interval arithmetic gives a simple and reliable rejection test for the box B not intersecting S. The
overestimation introduced by interval arithmetic may cause multiple iterations to remove a box B, if the ray is not
intersecting it.

Technical details of the algorithm are omitted here (see details in [18]). Two of the implicit functions which
can be represented by using the interval arithmetic operators are presented in table 3. As it can be observed, the
equations contain only shifts, power, addition and subtraction operators. This operations are fast on FPGA. Moreover,
the application permits to experience with different precisions using both the infimum-supremum representation or the
midpoint-radius representation. Furthermore, the trivially parallel description of the algorithm makes it suited for the
acceleration using FPGAs. It might nevertheless be interesting to find the limits of the perceived quality for a certain
function. This would offer a compromise between rendering quality and speed.

Additionally, this is an application for which the problem semantic is more suited for the midpoint-radius rep-
resentation. It feels more comfortable to define a box in a 3D space by it’s center and it’s radius. Midpoint-radius
representation often requires more computations due to therounding errors appearing when computing the center. We
can simplify the operator architectures by overestimatingthe result. Consequently, we can experience with reducing
the area of the operators and thus overestimating more the result at the benefit of increased parallelism due to smaller
operator size.
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5 Conclusions and future work

A few months ago, FloPoCo consisted of a small framework withone operator (FPConstMultiplier). During the
past months it has grown much faster than the initial roadmapforecasted. Although not all operators are finished,
core operators like IntAdder, IntMultiplier, FPMultiplier are reaching maturity while others like FPAdder, Karatsuba
multiplication, Leading Zero Counter, DotProduct still need some attention.

We have proved that the operators generated by FloPoCo surpass the generic ones present in generic floating-point
libraries. We have also shown that FloPoCo can compete Xilinx CoreGen, a state of the art core generator for Xilinx
FPGAs. Moreover, FloPoCo offers what no other products on the market do: different input/output precision for
all floating-point operators together with frequency driven architecture generation. The latter is possible due to the
innovativeautomatic pipeliningfeature present in FloPoCo.

The knowledge gained while implementing and integrating these operators in FloPoCo determined us to conduct
a study on the current opportunities for interval arithmetic on FPGAs. We chose the two most common interval
representations: infimum-supremum and midpoint-radius. We analyzed arithmetic operators in the context where, for
each representation, the set of input/output intervals wasa subset ofIF. We designed the architectures for each of the
basic operations: addition, subtraction, multiplicationand division. We provided a reality check on the implementation
and architectural requirements of each operator. However,the proposed architectures remain to be implemented and
tested in this context. Therefore, we have proposed a practical application for that. Ray tracing appears often in
computer graphics for rendering complex scenes. It requires massive floating-point computations. The parallel nature
of the problem makes it an ideal candidate for accelerating it using FPGAs. This is partially due to the fact that the
implicit functionswhich are to be evaluated contain only basic operations which can be implemented at high frequencies
within FPGAs.

Future work include completing this study with an application implementation. We will also work on other opera-
tors, especially in the dot product family.
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